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ARTICLE INFO ABSTRACT

Keywords: Target tracking serves as a fundamental motion control function for Unmanned Surface Vehicles (USVs),
Unmanned surface vehicle requiring the USV to rapidly approach a moving target without prior knowledge of its behavior. However,
Target tracking system time lag, underactuation, and environmental disturbances often lead to response delays, degrading

Deep reinforcement learning

) tracking efficiency. To address this, we propose a deep reinforcement learning-based end-to-end control method
Target following

aimed at enhancing the USV’s tracking efficiency and responsiveness. Unlike conventional approaches, this
method directly learns the mapping from sensor observations to control commands, optimizing decision-making
and control actions within a unified framework. A specific deep reinforcement learning algorithm for target
tracking is designed based on soft actor—critic framework and integrating predictive target information into the
observation space to learn an anticipatory control policy. This paradigm enables the USV to comprehensively
account for target movement uncertainty and its own maneuverability under environmental disturbances.
Comparative studies are conducted using a high-fidelity simulator that considers the USV’s nonlinear dynamics
and external influences. The results demonstrate that the proposed method outperforms conventional pure
pursuit-based strategy, exhibiting a more efficient and adaptive tracking behavior, akin to human driving

habits.
1. Introduction typically address these components separately, with a primary focus
on decision-making, commonly referred to as guidance laws.
Unmanned Surface Vehicles (USVs) are a type of marine unmanned Classical guidance laws for USV tracking missions are derived from
system with a wide range of applications, including environmental missile interception (Breivik and Fossen, 2008), including the Line of
monitoring, emergency rescue, patrolling and searching, investigation Sight (LOS), Pure Pursuit (PP) and Constant Bearing (CB) methods.
and evidence collection, adversarial gaming, as well as various civilian These methods adjust the yaw of USVs to achieve a desired head-
and military fields. Among their autonomous control capabilities, target ing based on the relative positions of the target and the USV. For
tracking is a fundamental function, playing a crucial role in tasks such example, Breivik et al. (2008) introduced a velocity control system
as rescue, pursuit, and monitoring. using the CB guidance law to track high-speed linear motion targets,
Despite the progress in autonomous guidance and control tech- validated through simulations. Similarly, Kim (2020) utilized the CB
niques for USVs, achieving efficient and responsive tracking of ma- guidance law for tracking maneuvering targets and proposed a close-
neuvering targets remains a challenge for USVs. These vehicles are range encircling strategy for continuous monitoring. However, unlike

high-speed and fast-response missiles, USVs are slower and exhibit time
delays in response to control input. This limits their ability to adjust
direction as rapidly as missiles do in response to target movements,
leading to a behavioral lag when tracking frequently maneuvering
targets.

Beyond yaw-guidance-based approaches, several studies have ad-
dressed the target tracking problem from the perspective of path plan-
ning. For instance, Bibuli et al. (2012) reformulated the problem into

inherently charactered by time delays, slow responses to control inputs,
underactuated dynamics, and susceptibility to environmental distur-
bances, all of which significantly impact their ability to track highly
maneuverable targets.

The target tracking mission can be divided into two components:
the decision-making process, which determines the strategy for ap-
proaching the target, and the motion control process, which ensures
effective execution of the planned commands. Conventional methods
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a virtual target-based path-following task, making the USV follow the
past path of the target vessel. Svec et al. (2013) generated tracking
trajectories that satisfy the motion constraints of the USV using a hybrid
A* approach. Methods leveraging trajectory generation and predictive
techniques have also been explored. Svec et al. (2014) applied Monte
Carlo sampling to predict target positions and generate feasible trajec-
tories, while Agrawal and Dolan (2015) combined prediction with the
A* algorithm to ensure safe paths under maritime collision regulations.
These methods mitigate the impact of time lag on USVs by predicting
the target’s future position, offering improved efficiency. However,
they often rely on predefined paths or static planning, which limits
adaptability in dynamic and uncertain marine environments.

To efficiently approach a moving target without a predefined tra-
jectory, USV tracking controllers should consider not only the target’s
current position, but also the anticipated positional changes due to
the target’s maneuvers. Additionally, it is crucial to comprehensively
consider other important aspects, such as kinematic constraints, control
system delays, and marine environmental disturbances. This makes
the target tracking problem a sequential decision-making problem,
where decisions at each step influence the future states and control
actions. Moreover, conventional methods often decouple planning and
control processes, leading to inconsistencies, as the planned trajec-
tory may not align with the control system’s ability to execute it
under dynamic and uncertain conditions. These discrepancies can de-
grade tracking performance, particularly when the system must respond
rapidly to frequent target maneuvers. To address this, the controller
must dynamically optimize decisions and adjust control inputs in real
time, effectively bridging the gap between planning and control while
managing uncertainties and disturbances.

Reinforcement learning (RL), particularly deep reinforcement learn-
ing (DRL), provides a promising framework for addressing these chal-
lenges. By leveraging feedback from the environment, DRL algorithms
dynamically optimize decision sequences to achieve long-term objec-
tives. Meanwhile, unlike conventional methods that treat planning and
control as separate modules, DRL can integrate these process into a
unified framework, enabling end-to-end learning of control policies.

Existing studies have demonstrated the potential of DRL in address-
ing various USV-related tasks. For instance, multi-agent DRL has been
applied to formation planning (Wei et al., 2023), while trust region
policy optimization (TRPO) has been used for autonomous berthing
under interference conditions (Shimizu et al., 2022). In the context
of robust control, Cui et al. (2022) introduced a probabilistic model
predictive control framework based on RL to handle environmental dis-
turbances, and Qu et al. (2023) utilized Proximal Policy Optimization
(PPO) to train pursuit-evasion strategies in simulated environments.
DRL has also been employed in broader USV tasks such as path follow-
ing (Deraj et al., 2023; Woo et al., 2019; Zhao et al., 2021; Zheng et al.,
2022) and collision avoidance (Teitgen et al., 2023; Xu et al., 2023).
These studies collectively highlight the potential of DRL to address
decision-making and control challenges across a range of USV missions.
However, its application to target tracking in USVs, particularly in
mitigating the effects of system delays and underactuated dynamics,
remains underexplored.

While DRL-based target tracking methods have been explored in
other unmanned systems, their extension to USVs poses unique chal-
lenges. For example, Zhou et al. (2021) and Bhagat and Sujit (2020)
employed DRL to enable UAVs to track ground targets, leveraging
the superior maneuverability and minimal response delays of UAVs.
Similarly, Sun et al. (2015) proposed a DRL-based tracking approach for
autonomous underwater vehicles (AUVs). Although AUVs share certain
characteristics with USVs, their fully actuated dynamics and different
propulsion mechanisms result in significant differences in maneuver-
ability and control. In contrast, USVs are underactuated systems, and
the differences in dynamic characteristics underscore the unique chal-
lenges of applying DRL to USVs. To the best of our knowledge, no prior
work has specifically investigated DRL methods for USV target tracking,
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leaving a critical gap in addressing the efficiency and responsiveness
required for such missions.

To enhance the target tracking capability of USVs when no prior
information about the target’s behavior is available, we propose a
deep reinforcement learning-based end-to-end control method. This
approach integrates predictive target movements with the USV’s self-
maneuverability, enabling rapid and adaptive pursuit of maneuvering
targets while effectively addressing challenges such as system delays,
underactuated dynamics, and environmental disturbances. The pro-
posed method leverages the soft actor—critic framework and incor-
porates predictive target information into the observation space to
learn an anticipatory control policy. By unifying decision-making and
motion control, our end-to-end system provides an effective solution for
the foundational function of target tracking. The method is validated
within a high-fidelity simulation environment, demonstrating higher
approaching efficiency compared to the pure pursuit method.

The specific contributions of this paper can be summarized as
follows

» Proposed a novel DRL-based end-to-end control framework for
USV target tracking: The proposed method unifies decision-
making and motion control, directly mapping observations to
control commands, achieving efficient tracking without prior
knowledge of target behavior. This fills a critical gap in the field
of real-time USV target tracking, where such an approach has not
been previously explored.

Emphasized the crucial role of predictive information in obser-
vations: By incorporating predictive target information into the
observation space, the model anticipates future target movements
and adapts its control strategy accordingly, improving responsive-
ness and reducing the effects of temporal delays inherent in USV
dynamics.

The rest of the paper is organized as follows. Section 2 presents the
formulation of the USV target tracking problem. Then, in Section 3, we
present the methodology. Section 4 comprehensively validates the ef-
fectiveness of the method through data-driven simulation experiments.
Finally, Section 5 summarizes the main findings of this paper and
discusses the research contributions.

2. Problem formulation

Given,

(i) a continuous, bounded, non-empty state space X C R® in which
each state x = [x, ¥, @, u, 0, r] T consists of the position coordinates
x and y in the inertial coordinate system, the heading angle ¢ of
the USV model, and the surge velocity u, the sway velocity v in
the body-fixed coordinate system, and the yaw rate velocity r,
as illustrated in Fig. 1;

(ii) a continuous, bounded and state-dependent control action space
U(x) ¢ R?, where each control action u=[n,45]T consists of a
propeller revolution » and a steering angle &;

(iii) the current state x| =[Xyq,» Yusv> Pusv> Husvs Vusvs Fusv];
control input w! = [n,,.3,s]; of the USV;

@iv) a 3-degree-of-freedom dynamic model X, = fycXyevs Uysy) Of
the USV in the horizontal plane, where u,, generates the thrust
and torque required for USV motion;

(v) the current state x'_ =[X,ar Viar> Prars Yiars Viars Trar); OF the tar-
get vehicle and the control input v/, = [n,,, 8,1 as well as the
motion model X, = fiar (X(ar> W) Of the target.

and the

usv

usv

Compute,

a real-time feasible control input u!, = [n,q,,8,s,]] to bring the USV
approach to the target in the shortest possible time.

In this study, it is assumed that the control strategy and dynamic
model of the target vehicle are unavailable in a non-cooperative sce-
nario; the movement of the target vehicle is not affected by the tracking
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Fig. 1. Coordinate system for USV target tracking scenarios.

actions of the USV. The USV can only perceive the current position of
the target vehicle, which makes this problem a Partially Observable
Markov Decision Process (POMDP). Additionally, the USV has a higher
velocity than the target vehicle, which guarantees the feasibility of the
target tracking mission.

During the tracking process, the positions of the USV and the target
are denoted as pzw £ [x, .v,)] € R? and pfm_ £ [x, .y, €
RR2, respectively. The relative position relationship between the target
vehicle and the USV at time ¢ is defined as follows:

Apr £ p{ar - pilSV = [4x, Ay];r' M

Without loss of generality, the target’s position can be obtained through
the USV’s onboard sensors (e.g., maritime radar). Specifically, the
position information is represented by the Euclidean distance d € (0, )
between the target and the USV and the azimuthal angle 6 € (—z, )
relative to the USV’s heading, with the following expressions:

d = \/(4x)* + (4y)? (2

0 = arctan2 (4y, Ax). 3

The target tracking mission aims to accurately and swiftly track a
target, minimizing errors and delays in the process. The objective is to
control the USV to approach the target vehicle within a predetermined
distance threshold d,,.s10,;4- The relative distance change between the
USV and the target during the tracking process is illustrated in Fig. 2,
where d,,;,;,; denotes the initial distance between the target and the
USV. T, and T, represent the time required to complete the tracking
under two different control policies. In the same scenario, the goal of
the tracking task is to reach the predetermined distance d,, .4 in @
shorter time 7).

The motion control of USVs is characterized by underactuation and
temporal hysteresis. Additionally, the movement of USVs is susceptible
to environmental disturbances, such as wind, waves, and currents.
These challenges significantly impact the ability of USVs to efficiently
track targets and impose high requirements on the decision-making
capabilities of unmanned systems.

3. Methodologies
3.1. Reinforcement learning algorithm for target tracking
Reinforcement learning provides a feasible approach to solving com-

plex sequential decision-making problems under uncertainty. This is
exactly applicable to the target tracking task for USVs, where decisions
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Fig. 2. Relative distance change during target tracking.

are made by considering both the target’s movements and its own
maneuverability under uncertainties.

The intuition behind our approach is to combine the target’s current
position, predicted future positions, and the USV’s state information as
observations to design a deep reinforcement learning algorithm that
learns the optimal control strategy through continuous experimentation
and feedback from the environment. The end-to-end reinforcement
learning algorithm directly maps observed states to control signals, in-
tegrating conventional planning and control modules. This integration
avoids the potential limitations and time lags that arise from designing
these modules separately. This reinforcement learning process is sim-
ilar to how human drivers accumulate experience—by observing and
predicting the movement of other vehicles, drivers adjust their actions
proactively, thereby achieving more efficient target tracking and the
ability to handle complex environments.

Specifically, the observation vector at moment ¢ is defined as:

t pt ! ! i Jt+N Ht+N1T 8
sf:[d’9’(pusv’uusu’vusv’r:lsv’d+ ’0+ I eR’, C))

where d"*N and "*N denote the predicted position of the target vehicle
N time steps ahead. The prediction of target motion is achieved by
fitting a cubic spline curve, as explained in Section 3.2. The end-to-
end solution allows the USV to generate a control action a, = &/, €
(=30°,30°) by utilizing its own motion information, the current position
of the target, and the predicted position of the target.

The target tracking strategy is established based on the Soft Actor—
Critic (SAC) algorithm, a model-free reinforcement learning framework
based on the Actor—Critic architecture. The SAC algorithm refines the
Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2019) by
introducing the concept of maximizing entropy, which enhances the
model’s exploratory capabilities and stability (Haarnoja et al., 2019).
An overview of the proposed method is shown in Fig. 3.

To encourage the agent to self-explore and learn effective control
policies without much prior knowledge, this paper designs a reward
function designed based on the task objective, defined as follows:

ry =rdis+rtime=kl(d’_dt+l) _k2 (5)

where r, denotes the feedback reward that the agent receives from
the environment after executing action a, at time 7. r,;, represents
the distance reward, guiding the USV to approach the target. r;,,
represents the time reward, making the agent aware of the time steps
consumed during the tracking process. k; and k, are hyperparameters
used to determine the weights of the distance reward and the time
reward, respectively.

The goal of the DRL algorithm is to maximize the return R, which
is calculated as follows:

T
R=Yr,=kd —d"™") - k,T, (6)
t=0
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Fig. 3. Overview of proposed methods for USV target tracking.

where T denotes the total time spent during the tracking process.
The final cumulative reward for distance is determined by the initial
distance d° and the final distance d”*! between the USV and the target,
as well as the elapsed time 7. To prevent unnecessary exploration that
could lead to task failure during training, a constant upper limit is
imposed on T.

By analyzing the overall outcomes of the tracking task, we can gain
a clear understanding of the return. In the early stage of training, the
agent is not yet capable of completing the task within the specified
time. According to Eq. (6), the return value depends on the initial
relative distance d° between the USV and the target, as well as the
relative distance d”+! at the end state, with k,T as a constant. Once
the agent learns an effective control policy, it can operate within the
distance range set by the target navigator within the specified time,
making d”*! a constant as well. This return value is then determined
by the initial distance d° and the task duration T. This reward function
helps improve the control strategy from the perspective of tracking
efficiency. The designed reward function is highly flexible, as it does
not require in-depth knowledge of task specifics. It provides reward
signals based directly on agent behavior and the environmental state,
reducing rule constraints and minimizing bias introduced by human-
defined rules. At the same time, it allows for a broader exploration
space, enhancing the agent’s decision-making ability and fully utilizing
the advantages of deep reinforcement learning (DRL) algorithms.

The optimal policy z* in SAC is denoted as:

7% =arg max Z Es,a)~p, [r(s;.a) + aH(z(:|s,)] . @
t

where p, represents the state-action marginals of the trajectory dis-
tribution. The reward function r(s,, a,) reflects the feedback from the
environment when the agent takes action a, in state s,. Entropy H
measures the stochasticity of policy = under state s,, and it can be
calculated as follows:

M (71'(- 150)) = ~Eqorcs) [log 7 1 5))] - (8)

The temperature parameter « determines the weight of entropy com-
pared to reward, thus controlling the explorability of the optimal
policy.

To enhance the adaptability of the algorithm, the automatic temper-
ature parameter adjustment is formulated as a constrained optimization
problem. The specific form is as follows:

t

m;;ixIE” [Z r(s,,a,)] st B a~p, [=1og(m(a,Is))] = Hy, ©)]

where H,, is the desired minimum expected entropy. By maximizing ex-
pected returns while ensuring that the mean entropy remains above H,,

the simplified loss function for the temperature parameter is expressed
as:

J(@) =E, ., [-alogm(a,ls,) - aHy). 10$)

The detailed derivation procedure can be found in the reference
(Haarnoja et al., 2019).

During target tracking, the agent utilizes an action value function
to evaluate the potential long-term rewards that can be obtained by
taking different control actions in a given state. Therefore, the action
value function can be expressed as:

OCs. @) = r(sp a) + vEs | <pis,y1s.aplV (S0 an
where y is the discount factor. The state value function is expressed as:
V(s) = Eq,.[O(s. @) — alog n(ays)]. (12)

In the policy improvement step, for each state, we update the policy
according to

exp (£074(s,, )

Z7old(s,) ’ as

: ’
Tpew = arg min Dy | 7' Clsy)

where II represents the policy set, and Dy; indicates the KL diver-
gence. The logarithm partition function Z7old(s,) serves to normalize
the distribution.

During the training process, two Q-networks with identical struc-
tures are employed to mitigate the overestimation of action values.
At each iteration, the policy network is updated by selecting the
lower Q-value. To enhance sample independence and improve training
efficiency, an experience replay buffer D is established to store environ-
ment interaction samples (s, a, s, r), which are randomly sampled from
D during training. The loss function for the actor networks that train
the policy z,, can be defined as follows:

I (@) =By Do, [alogz, (a, | 's,) = Qp (51-a,)] a4
The loss function for training the critic networks is defined as follows:
To©) =By gD r, [% (0o (s-) = 0y (s1-,))’]. 1s)
where Q,(s,, a,) is given by:

Oy(s,a,) = r(s;, @) + v (Qg(si11> apey) — alogmy (@ | 541)) - (16)

The parameters of the target Q-network are denoted as 6. The param-
eters are softly updated in each iteration:

010+ (1-1)0, a7

where 7 is greater than 0 but much less than 1.
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The detailed algorithm based on the above description is given in
Algorithm 1.

Algorithm 1: The DRL algorithm for target tracking control

Input: maximum number of tracking time steps 7', target
relative distance threshold d,,. 504, the prediction
horizon n.
Initialize parameters ¢, 6,,6, for the actor network and critic
network and experience replay buffer D « @.
1 repeat

2 Initialize the state of the USV and target vehicle, xuw and

0
tar

3 while 7 < T and the relative distance || Ap ||> d,j,esn01a 4O

4 Predict the future position of the target f)’*"

5 Update observation state s, < xusv,p pf;"

6 Sample the target’s action uj, ~ p,, and the USV’s
action a, ~ z,(a,|s,)

7 Apply the selected action to either the vehicle dynamics
model or real-world system

8 Generate the next state s,,; ~ p(s,;11S,,a,)

9 Calculate the reward r, based on the current state and
action

10 Store the tuple (s,, a,, (s, a;), s,,1) in the replay buffer D

11 end while

12 for each gradient update do

13 Update the Q-function parameters
0; < 6, — 4gVy Jo(6)) for i € (1,2}

14 Update policy weights ¢ — ¢ — 1,V 5J,(¢)

15 Adjust entropy temperature a « a — )ﬁaJ (a)

16 Update target network weights
0; < 70, + (1 — 1), for i € {1,2}

17 end for

18 until max episodes;
Output: Optimized parameters ¢, 0, 6,.

3.2. Prediction of target position

In the scenario of non-cooperative target tracking, different future
trajectories 7; of the target vehicle correspond to different optimal
policies z; for the USV, making it challenging to learn an effective
tracking strategy based solely on the real-time position information of
the target, as shown in Fig. 4(a). To address this, we incorporate the
predicted information of the target’s movement into the observations.
This enables the agent to engage in self-exploration considering both
the current and future positions of the target. The schematic diagram
is illustrated in Fig. 4(b).

Let p:“m represent the measured position of the target at time step k,
forming a trajectory [p?ar R pllar, . p:‘a r]T. The future position of the target
n time steps ahead is represented as pl’:’”.

The goal is to perform a short-term trajectory forecast of p’”’" =
[xf;”, fz{‘;”] A cubic polynomial curve is employed based on the f1tt1ng
of recent trajectory points. Taking the element £ A"*" as an example, the

forecasting mathematical representation is glven by:

xl]Zr=a0+a1~N+a2~N2+a3-N3,

where N = k + n represents n steps into the future for prediction, with
unknown parameters ay, a;, a, a3.

To determine these unknown parameters, a matrix representation is
utilized:

X=V=xA, 18)

k=2 k-1 T 4 , s
where X = [xmr S Xpo sy X ,xmr] € R* denotes the target’s position at
previous and current time steps, A = [a,, a,,a,,a;]" € R* represents the
vector of unknown coefficients, and V is the coefficients matrix varying

with the time step. The detailed elements are as follows:

k31 k=3 (k-3 (k-3P||ay
xk=2 _|r k-2 k- 22 (k=2P||q (19)
T k=1 k=D (k=1 a,
xk 1k K2 KB las

The unknown coefficients are solved as A = V™! » X. Similarly, we
can estimate yk+" The relative positions of the target and the USV are
calculated as follows:

Apktn & phin _ = [4x, 4y]],,. (20)

uw

According to Egs. (2) and (3), d**" and 6" can be obtained and
incorporated into the observation.

4. Results and discussion
4.1. Experimental setup and training parameter configuration

To evaluate the effectiveness of the proposed method, case studies
are conducted in a high-fidelity simulation environment for a 7.5-
meter-long USV. The simulator is designed to accurately replicate
the dynamic characteristics of USVs and account for environmental
disturbances, providing a realistic evaluation platform. It employs a
precise maneuvering model that incorporates environmental effects,
capturing factors such as system time lag, nonlinear maneuverability,
and external disturbances. The dynamical model was developed using
a hybrid physical-machine learning approach, which combines mech-
anistic theory with data-driven techniques based on real navigation
data from lake trials. This model has demonstrated strong predictive
performance, ensuring that the simulation environment supports the
validation of the proposed control method. For more details, refer
to Wang et al. (2024). In the case study, the USV has an average
speed of approximately 3.6 m/s, while the target vehicle has an average
speed of around 3 m/s. Successful tracking is indicated by reducing the
relative distance between the target vehicle and the USV to d,,,p014 Of



Z. Wang et al.

Ocean Engineering 317 (2025) 120059

—— DDPG with prediction
SAC with prediction

Wt WMWM"WW

600 800 1000
Episode

Fig. 5. The return curve for reinforcement learning.

-2000
E
E
©
o
;-fu -4000
g
Z
LA Vwr
-6000 V
-8000
0 200 400
Table 1
Parameters of actor network.
Item Values
Input layer 8
1st full-connected layer 128
2st full-connected layer 64
Output 1
Learning rate 0.0002
Optimizer Adam Optimizer
Table 2
Parameters of Value network.
Item values
Input layer 9
1st full-connected layer 128
2st full-connected layer 64
Output 1
Learning rate 0.002
Optimizer Adam Optimizer

15m. The performance metrics focus on approaching the target vehicle
as quickly as possible.

Tracking is initially performed in a scenario where the target moves
in a straight line, using the pure pursuit guidance method as a baseline
to validate the tracking efficiency of the proposed method. The DDPG
method is also utilized as a control group in this case. Subsequently, we
perform scenarios where the target changes course to demonstrate the
significance of predictive information in the agent’s decision-making.
Finally, multiple repetitive experiments are conducted to test the ro-
bustness of the method. By tracking vehicles with more complex motion
policies, we further illustrate the generalization capabilities of the
method.

For the DRL algorithms, the return value of each round is an
important indicator of the training results. According to Eq. (6), 10
test evaluations are conducted after each learning round. The relevant
hyperparameters for the Actor network, Value network, and parameters
of the training process are shown in Tables 1, 2, and 3. The training
process incorporates random initialization of the initial states for both
the target vehicle and the USV. Additionally, the target vehicle’s control
strategy is updated through random sampling every 5 s. The return
curve after 1000 learning rounds is illustrated in Fig. 5, with a com-
parison to the DDPG algorithm. In the following figures, the proposed
method is labeled as SAC with prediction.

The experimental results show that as learning time increases, the
model’s performance steadily improves and eventually stabilizes. Com-
pared to the DDPG algorithm, the SAC algorithm not only performs

Table 3

Parameters of training process.
Item Values
Time step 400
Time interval At 0.1s
Prediction time 3s
Replay buffer size 5% 10°
Batch size 128
Discount factor y 0.99

Learning rate of a 0.0002

better in terms of average performance but also demonstrates a more
stable and decreasing trend in the upper and lower bounds of its
returns. This observation validates the core principle of maximum
entropy reinforcement learning, which aims to enhance the adaptability
and stability of agents in complex and uncertain environments by
introducing diversity in their strategies. This stability is crucial for
handling complex tasks with uncertainty and volatility in the real
world.

4.2. Tracking efficiency for straight-line motion targets

To assess the tracking efficiency of the proposed method, we first
conducted experiments using a scenario where the target moves in a
straight line. This straightforward motion pattern serves as a funda-
mental test case, allowing us to validate the basic functionality and
performance of our tracking algorithm. For comparison, we employed
the pure pursuit guidance method combined with PID control as a
benchmark, referred to as the PP method in the following. This strategy
aims to align the USV’s heading with the target’s azimuth angle in
real-time. The USV’s heading is continuously adjusted through feedback
control. The DDPG method is also employed as a control group. This
initial test case aims to evaluate the effectiveness of the proposed
approach in a controlled environment before exploring more complex
motion patterns.

Specifically, the target vehicle moves along a straight line starting
from coordinate (0,0) with an initial heading of (p:’ar = 90°. The USV’s
initial coordinate is (—70,0), also with an initial heading of wﬁsv =90°.

The tracking trajectories are shown in Fig. 6. The trajectory con-
trolled by the SAC algorithm approaches the target vehicle more
quickly and with less curvature. This indicates that the proposed
method identified a more efficient tracking control strategy compared
to the other two methods. Fig. 7 illustrates the variation in the relative
distance between the USV and the target during the tracking process
for the three decision control methods. The results show that by
approximately 32 s, the USV controlled by the SAC method reaches
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the target range and successfully completes the tracking, whereas the
USV controlled by the PP and DDPG methods still maintains a certain
distance. The trajectory generated by the SAC method exhibits less
curvature compared to that of the PP and DDPG methods, implying that
the SAC method minimizes unnecessary steering actions. In terms of
relative distance, the SAC method continuously reduces the distance to
the threshold with a steeper trend. This highlights the superior tracking
efficiency of the SAC method over the PP and DDPG methods.

Ocean Engineering 317 (2025) 120059

80 1

—— Heading Angle
~-- Azimuth Angle

T T T T T T

25 30

Fig. 9. Heading change controlled by DDPG.

100

—— Heading Angle
---Azimuth Angle

15 20 25 30
Time step [s]

Fig. 10. Heading change controlled by SAC.

80
True Trajectory 35f -
#» Current Position K
iti ’
704 @® Futufe Posmo'nl 30s @’
% Predicted Position *
I%‘
60 y
/
25s ¢
£501 »
x /
/l
404 208'
X
//
15s »
301 >
10s .-
Os 5s o r
20 e»--g @ -
20 40 60 80 100
Y [m]

Fig. 11. Predicted results of target vehicle maneuvers.

Figs. 8, 9 and 10 illustrate the heading angle of the USV and the
azimuth angle of the target vessel relative to the USV for three control
strategies. Specifically, the azimuth angle corresponds to the desired
heading angle for the PP method, as described by Eq. (3). As can be
seen, both strategies enable the USV to adjust its heading towards the
direction of the target and eventually align with the target’s heading.
However, the PP method consistently maintains a certain gap from the
desired angle. This discrepancy can be attributed to the inherent time
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Fig. 13. Target tracking from different initial positions.

lag characteristic of the USV, where the feedback control of the azimuth
angle causes the actual heading to lag behind the desired heading.
Furthermore, this lag is exacerbated by the continuous changes in the
relative direction of the target, which affects the tracking efficiency.

In contrast, two DRL approaches demonstrate a more adaptive and
responsive adjustment of the USV’s heading angle than the PP method.
Notably, the SAC method’s heading angle exhibits a look-ahead be-
havior, pointing toward the target vehicle’s future position, thereby
improving the tracking efficiency. These results demonstrate that the
SAC method reduces the lag effect inherent in the USV’s dynamics
and outperforms both the PP and DDPG methods in terms of tracking

efficiency.

Time step [s]

(d)

4.3. Tracking performance for curved motion targets

The scenarios of targets moving along curved paths are further
tested, where the unavailability of the target’s trajectory has a signifi-
cant impact.

As mentioned in Section 3.2, predictive information is incorporated
into the observation to reduce the uncertainty impact caused by the
target’s maneuvering. The prediction effect is illustrated in Fig. 11. The
future position represents the position 3 s after the current moment,
while the predicted position denotes the forecasted result. Overall, the
outcome is deemed acceptable.

As an example, consider a target with an initial heading (p?ar of 0°

at coordinates (0,0), and the USV starting with an initial heading ¢

0
usv

of 150° at coordinates (—50,—50). The comparison results between the
proposed method and the pure SAC without predictive information are
depicted in Fig. 12, where each trajectory point interval represents 5 s.
The changes in relative distance d, relative azimuth angle 6, heading
angle ¢, and rudder angle § during the tracking process are shown

sequentially in Fig. 12(c) and Fig. 12(d).

The results demonstrate the advantages of incorporating predictive
information in the SAC model for USV target tracking. In the scenario
without predictive information (Fig. 12(a)), the SAC model’s decisions
are based solely on the current state. This results in suboptimal de-
cisions, such as choosing a large left-turning action at 9 s when the
target continues straight and then turns right at 20 s. These incorrect
decisions lead to frequent course corrections, as indicated by the erratic
rudder angle adjustments, and significantly increase the tracking time.
The USV takes 100 s to close the distance to 19 m from the target, with
pronounced strategy instability due to the limitations of the POMDP
model.

Conversely, Fig. 12(b) illustrates the SAC model with predictive
information. This model anticipates the target’s movements more accu-
rately, reducing strategic uncertainty. Consequently, the USV achieves
effective tracking within 62 s, maintaining a distance of 15 m from
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the target. This represents a 40% reduction in tracking time, with a
smoother trajectory and minimal excessive steering adjustments. These
results highlight the enhanced efficiency and accuracy of the SAC
model when augmented with predictive information, leading to more
stable and rational control decisions.

4.4. Robustness testing in diverse scenarios

To demonstrate the robustness of the method, we conducted sim-
ulations to verify its efficacy in diverse scenarios. The test scenario,
depicted in Fig. 13, involves the USV tracking the target from four
different initial positions labeled “A, B, C, D”. The maneuvering trajec-
tory of the target vehicle is also shown. The USV’s heading is randomly
initialized in each simulation to test the method’s robustness. The test is
repeated 100 times for each initial position, with the tracking duration
recorded for analysis.

We compared the proposed method with the SAC method without
predictive information, PP method, and the predicted PP method.
The predicted PP method utilizes the predicted position of the target
as a reference point and applies the pure pursuit guidance method.
This comparison is illustrated in Fig. 13. It is important to note that
the fundamental principle of the proposed end-to-end method with
predictive information differs from that of the predicted PP method.
The proposed method incorporates predictive information directly into
the observation vector, which also includes the current position and
other relevant data. Through DRL method, the agent comprehensively
utilizes this information, learning to make optimal decisions through
interaction with the environment.

As seen in Fig. 14, the proposed end-to-end method (SAC with
prediction) achieves the smallest median tracking time, with minimal
data fluctuation, indicating robust performance. This result highlights
the advantage of the proposed end-to-end approach. Compared to
the baseline method of predicted PP, which treats decision-making
and control separately, the proposed end-to-end method allows the
algorithm to continuously learn and adjust in real time, thus avoiding
the limitations and delays often associated with separating planning
and control into distinct modules. In addition, among the four methods,
the methods integrating predictive information effectively reduce the
tracking time, thereby alleviating the impact of the USV’s inherent time

lag characteristics. The proposed method significantly outperforms the
SAC model without prediction, addressing the instability issue inherent
in the POMDP model.

While these results demonstrate the effectiveness of the proposed
method, reinforcement learning-based control approaches naturally
face certain challenges. One aspect is their task-specific design, as
components like reward functions are often tailored to particular
problems. Extending the approach to more complex tasks may re-
quire adjustments to the reward function or incorporating additional
decision-making mechanisms. Another aspect is the training cost, par-
ticularly in real-world environments where significant resources and
time are required. Transfer learning could provide a potential solution
by leveraging pre-trained models to reduce training requirements for
similar tasks. Despite these challenges, reinforcement learning remains
a valuable option for addressing complex decision-making problems un-
der uncertainty, and this study demonstrates its potential in advancing
intelligent USV applications.

To further validate the generalizability of the reinforcement learn-
ing method, we conducted experiments with targets exhibiting different
motion control policies. In these experiments, the initial relative posi-
tion and headings of the target with respect to the USV were randomly
initialized. As shown in Fig. 15, the USV tracked the targets without
redundant steering adjustments or significant lags. Even without prior
knowledge of the target’s trajectory, the method controls the USV to
quickly approach the target to a predetermined distance. This confirms
the method’s generalizability and its effectiveness in tracking targets
with various control policies.

5. Summary

This paper presents a novel end-to-end control approach for tar-
get tracking using reinforcement learning. The method enables USVs
to swiftly pursue maneuvering targets without prior knowledge of
their trajectories. The designed DRL algorithm can effectively incor-
porate predictive target information and self-maneuverability into the
decision-making process, directly generating control commands in an
end-to-end manner. This enables real-time anticipatory control that
minimizes tracking delays and improves overall efficiency.

The results underscore the significance of integrating target position
prediction information into the observations. Decision-making based
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on both the target’s current position and its predicted future positions
significantly reduces maneuvering uncertainty and enhances the ro-
bustness of the DRL method in USV target tracking tasks. The outcome
aligns with human driving habits, enabling a predictive response to
maneuvering targets. As a fundamental motion control function, this
target tracking control framework can be expanded to address more
complex decision-making and control problems such as multi-agent
pursuit, cooperative encirclement, and monitoring.
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